Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
High-resolution simulations can deliver great visual quality, but they are often limited by available memory, especially on GPUs. We present a compiler for physical simulation that can achieve both high performance and significantly reduced memory costs, by enabling flexible and aggressivequantization.Low-precision (quantized) numerical data types are used and packed to represent simulation states, leading to reduced memory space and bandwidth consumption. Quantized simulation allows higher resolution simulation with less memory, which is especially attractive on GPUs. Implementing a quantized simulator that has high performance and packs the data tightly for aggressive storage reduction would be extremely labor-intensive and error-prone using a traditional programming language. To make the creation of quantized simulation practical, we have developed a new set of language abstractions and a compilation system. A suite of tailored domain-specific optimizations ensure quantized simulators often run as fast as the full-precision simulators, despite the overhead of encoding-decoding the packed quantized data types. Our programming language and compiler, based onTaichi, allow developers to effortlessly switch between different full-precision and quantized simulators, to explore the full design space of quantization schemes, and ultimately to achieve a good balance between space and precision. The creation of quantized simulation with our system has large benefits in terms of memory consumption and performance, on a variety of hardware, from mobile devices to workstations with high-end GPUs. We can simulate with levels of resolution that were previously only achievable on systems with much more memory, such as multiple GPUs. For example, on asingleGPU, we can simulate a Game of Life with 20 billion cells (8× compression per pixel), an Eulerian fluid system with 421 million active voxels (1.6× compression per voxel), and a hybrid Eulerian-Lagrangian elastic object simulation with 235 million particles (1.7× compression per particle). At the same time, quantized simulations create physically plausible results. Our quantization techniques arecomplementaryto existing acceleration approaches of physical simulation: they can be used in combination with these existing approaches, such as sparse data structures, for even higher scalability and performance.more » « less
-
We present DiffTaichi, a new differentiable programming language tailored for building high-performance differentiable physical simulators. Based on an imperative programming language, DiffTaichi generates gradients of simulation steps using source code transformations that preserve arithmetic intensity and parallelism. A light-weight tape is used to record the whole simulation program structure and replay the gradient kernels in a reversed order, for end-to-end backpropagation. We demonstrate the performance and productivity of our language in gradient-based learning and optimization tasks on 10 different physical simulators. For example, a differentiable elastic object simulator written in our language is 4.2x shorter than the hand-engineered CUDA version yet runs as fast, and is 188x faster than the TensorFlow implementation. Using our differentiable programs, neural network controllers are typically optimized within only tens of iterations.more » « less
An official website of the United States government

Full Text Available